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Abstract. For networks of formal two-state neurons the squegtigl legni_ng pcpblem is 
considered: a set of patterns has been memorized by adjusting a matrix of the synaptic 
efficacies. Then an extra pattern is presented to the network and should be stored in addition 
to previous patterns in such a way that the latter are not used, +he prnhlem has been 
solved in the framework of the pseudo-inverse learning d e s .  The resulting synaptic matrix 
has the same value as for other variants of the pseudo-inverse learning rule if memorizing 
of the previous patterns was performed by some pseudo-inverse rule. 

1. Introduction 

The learning problem is usually formulated for networks composed of two-state formal 
neurons (k ing  spins) as follows: it is necessary to find a matrix of the synaptic efficacies 
J, ( i , j  = 1,2, .  . . , N )  so that a set of p memorized patterns represented by the N-  
dimensional binary vectors e', 5'. . . . , ep are attractors (fixed points) of the network 
dynamics [l]. However, if one approaches real biological systems then some additional 
properties are necessary. So, suppose that the p patterns ( r )  were presented to the 
network and after a certain time interval a new set of q patterns { C O }  should be stored 
in addition tothe previous one. It is obvious that this task can be achieved by memorizing 
the joint set of ( p +  q )  patterns anew, but in real situations the first set of patterns {e*} 
can already be missing while the second one {c') enters the network. Thus the following 
problem arises. 

Let us assume that a set M = {e' ,  c2,. . . , ep} of p patterns has been memorized by 
adjusting the synaptic matrix J. Then an extra pattern &' is presented to the network 
and should also be stored. It is necessary to find such a matrix that: (i) all ( p + l )  
patterns will be memorized (i.e. they should be attractors of the network dynamics); 
and in addition (ii) the matrix must be determined through the matrix J and vector 
5 only, but not through the set M. 

This prnh!em wi!! he referred !n as the sequential learning problem, 
The importance of this problem is caused by the fact that relearning a neural 

network in order to memorize patterns presented in different time periods can be 
impossible if information is obtained from the real world. In fact, all biological nervous 
systems in their everyday life fulfil a sequential learning: new events add new images 
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in the memory. Artificial systems should he learnt sequentially in order to operate in 
changing situations. 

A very simple and elegant solution of the sequential learning problem is given in 
fact by the Hebhian learning rule [1,2]: 

However, as is known, this rule performs well in the case of random uncorrelated 
pattems only, whereas patterns entering the network from the real world can be 
correlated. 

Correlated patterns are acceptable inputs for the pseudo-inverse ( P I )  learning rule 
proposed by Kohonen [3] and Personnaz et al [4]: 

where C-' is the inverse matrix for the pattern correlation matrix 

and summing over p and Y is performed from 1 to p if the memorized patterns are 
all linearly independent. This rule has been formulated in a local iterative way by 
Diederich and Opper [SI: 

\ 
(4) 

Berryman ef al [ 6 ]  proved that the latter algorithm converges for any set of pattems, 
including linearly dependent ones, and the resulting synaptic efficacies are the same 
as for any maximal linearly independent subset of the patterns L. The iterative procedure 
(4) produces the matrix J which can be given by equations (2) and (3) if they are 
restricted to the subset L. 

The PI learning rule also possesses other good properties [7], but in general this 
rule is a solution of the learning problem but not of the sequential one. In fact the 
latter problem has been solved in the framework of the PI rule for orthogonal patterns 
by Personnaz et al [8], hut this solution is equivalent to the Hehbian rule (1) (see 
equations (16) and ( 1 8 )  below). Moreover, as is pointed out above, the patterns to be 
stored can he from the real world and therefore they can be non-orthogonal. 

Here the restriction of orthogonality of the stored patterns will be removed. In 
other words, the aim of this paper is to find a solution of the sequential learning 
problem in the framework of the PI approach for arbitrary patterns. 

The rule defined by equations (2) and (3) or, equivalently, by equation (4) will be 
referred to as the standard P I  learning rule as opposed to the sequential PI rule given 
below. The synaptic matrices produced will he called standard and sequential PI 

synaptic matrices, respectively. 
The paper is organized as  follows. In section 2 a sequential PI learning rule is 

constructed, section 3 is devoted to comparison between the sequential and standard 
PI synaptic matrices and section 4 contains some conclusions. 

I /  r =o, 1 , 2 , .  . , J y  I + ,  - - J 1 , + , 1 ( 1 - 1 J : r 5 : 5 ; ) 5 : 5 :  
, k 
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2. Finding a sequential pseudo-inverse learning rule 

The PI learning rule defines matrix J as  a solution of the equations [3,4] 
N 

1 -45; = 5: & = 1,2, .  . . , p  i =  1 , 2 , .  . . , N ( 5 )  
, = I  

or in the matrix form 

J K = K  

where matrix K consists of the components of the memorized vectors: K., = C Y .  In 
the framework of the PI approach the sequential learning problem can be formulated 
as follows. Let us assume that for a given matrix K matrix J has been adjusted so 

j so that: (i) the equations 
equaiiun (6 )  is jaiisfie;, Tien fur given vecior i ii is necessary io find a mairiA 

j K = K  (7) 

jc={  (8) 

are satisfied; and (ii) matrix j is expressed through matrix J and vector 5 only, but 
not through matrix K.  

We start with equation (8). Its general solution can be represented in the form [8] 

.7= '1+ J ( I  - ' 1 ) + ~ ( ~ -  r l )  (9) 

1 ll=zc@c. 
Here the sign 0 denotes the direct product, i.e. 

[A@Bl, =A,B, 

for arbitrary vectors A, B; I is the unit matrix and D is an arbitrary matrix. Substitution 
of equation (9) into equation (7) yields the following equation for the matrix D: 

D(I  - 7 ) K  = ( J - I ) v K .  ( 1 1 )  

Let Q he the PI matrix [9] for the matrix ( 1 - 7 ) K .  Then the solution of equation 
(11) is 

D = ( J  - I ) q K Q  

and equation (9) takes the Form 

(Note that for calculating matrix Q one can formulate an iterative procedure on the 
analogy of [5, IO].) Thus equation (12) determines a learning rule for the network. 
However, this is a solution of the learning problem only, hut not of the sequential 
learning problem because the third term in equation (12) depends on matrix K (directly 
and through matrix Q ) .  

Nevertheless, equation (12) gives the possibility of formulating an algorithm for 
sequential learning. To this end let us represent the vector 6 as 
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where the first term is a projection of the vector 5 on to the subspace H, spanned by 
the memorized vectors e', t2,.  . . ,.$' and the second term is an orthogonal complement 
of the vector {, i.e. the binary vector + is orthogonal to the subspace H,: 

(*.$")=O u = 1 , 2  ,..., p. (14) 

The coefficients a', a', . . . , a' and b in equation (13) are real constants. (Note that 
two N-dimensional binary vectors A, B could in principle be orthogonal, i.e. ( A B ) -  
Z AiBi = 0, if the number N is even. Therefore, our method is directly applied for an 
even N only. If the number of the neurons N is odd then one auxiliary neuron can, 
in addition, be introduced.) 

First let us consider two particular cases. 
(i) Let the vector 3 have no orthogonal part, i.e. b+=O and <=.Xav.fr. Then 

( J -  I ) ?  = O  and equation (12) gives J = J, i.e. no changes appear in the matrix of the 
synaptic efficacies. The reason is that the PI learning rule automatically memorizes all 
valid linear combinations of the embedded vectors [4,7] or, in other words, the PI rule 
matrix J is a matrix projecting onto the subspace H, spanned by the memorized 
patterns, and adding linearly dependent patterns does not change this subspace [4,6]. 

(ii) Let the vector < have no projection part, i.e. Z a".$" = 0 or 6 = b+. Since 5 and 
+ are both binary vectors then b = *1 and 

5=**. (15) 

- 

As a result qK = 0 and equation (12) takes the form 

i= 7 + J ( I  - q) 

Or 

(16) 

This result coincides, as it should, with the learning rule [8] proposed by Personnaz 
et a1 for orthogonal patterns. Note that from equations (2) and (14) the condition 
follows that 

J+=O (17) 

which is due to the fact that the PI matrix J is a matrix projecting on to the subspace 
H,, but + is orthogonal to H,. Taking into account equations (15)  and (17), from 
equation (16) one obtains 

1 
N 

= J + ( I  - J )  - 504'. 

- 1 
J = J +- (06. 

N 

This is merely the Hebbian learning rule ( I ) .  
Consider now the general case (13). As is mentioned above, the PI learning rule 

automatically memorizes all valid linear combinations of the memorized vectors. 
Therefore it is sufficient to store the orthogonal component + of the vector 5 o?ly. 
Thus on the analogy of equation (18) the following expression for the matrix J is 
obtained: 

(19) 
1 
N 

j = J + - * @ * .  
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It may be checked that the matrix j defined by this equation satisfies equations (7) 
and (8). Thus the sequential leaming problem is reduced to finding the orthogonal 
component I& for an arbitrary vector 5. 

The latter problem can be treated as follows. First let us multiply equation (13) by 
the vector +. Then taking into account equation (14) one has 

(20) 
1 

b = ;  (W. 

Further, from equation ( 5 )  it follows that 

P 

( I - J )  1 am("=O. (21) 
o=, 

Since according to equation (13) 

0 
a"(-=C-bI& 

- = I  

then equation (21) takes the  form^ 

b ( 1 -  J)* = ( I  - J)C 

or 

bI& = 5- J c  

where condition (17) was used. The last equation clearly means that since JC is a 
projection of the vector 5 on to the subspace H6, hence (6- 51;) is that part of the 
vector 5 that is orthogonal to He. 

After substitution of equation (22) into equation (20) the following expression is 
given: 

From equations (19), (22) and (23) one obtains the final expression for the matrix j :  

or 

It is easy to check that this matrix indeed gives a solution of equations (7) and (8) 
and therefore equation (24) is a sequential PI synaptic matrix. 

It is obvious that all patterns presented to the network can be memorized by this 
procedure so that the synaptic matrix for patters e', t2,. . . , 6" is given by the following 
recurrent expression: 

(25) p = y - l +  ( N -  ( t ~ ) ~ j * - l ( f i ) - l ( ( ~  - y-',y)@(t* -y-I(*) 

where /.L = 1,2,  . . . , p.  
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3. A connection between sequential and standard pseudo-inverse synaptic matrices 

Let us consider how matrix given by the sequential rule (24). is connected with the 
synaptic matrix produced by the standard PI learning rule (2), (3) or, equivalently, by 
the iterative algorithm (4). This question has no obvious answer. Indeed the general 
solution of the equation JK = K has the form [SI 

J = KK'  + B ( I  - K K ' )  

where K' is the PI matrix for matrix K and B is an arbitrary matrix. Therefore two 
PI synaptic matrices can be different due to different matrices B. Plainly, matrix j 
depends on what matrix J is used in equation (24). First consider the case when J is 
given by the standard PI rule (2), (3) or (4). 

To be more exact, note that we consider the following two sets of patterns: 
M ={e', e2.. . . , gp}  and M, = {t', t2,. . . , f', t""} = { M ,  61 with one additional pat- 
tern 5= t p + l .  Matrix J is the standard PI synaptic matrix for the set M. For the set 
MI one can construct two synaptic matrices: the sequential matrix J by means of ru le  
(24) and a standard PI matrix J ,  using rules (21, (3) or (4). Our aim in this section is 
to compare the matrices j and J, . 

To do this let us consider how the matrices J and J ,  can be calculated. Let L be 
a maximal linearly independent subset of the patterns (MLISP) for the set M. Then 
matrix J can be defined by equations (2) and (3) where only the patterns from the 
subset L contribute. 

In the computation of matrix J, it is reasonable to begin with two particular cases, 
as in the previous section. 

(i) Let vector 6 be a linear combination of vectors t', t2, .  . . ,gp. Then the subset 
L can be used as an MLISP for the set M,. Therefore in this case J, = J and j = J , .  

(ii) Let the vector 6 be orthogonal to the set M. Then let us take the set {L, 5) as 
an MLISP for the set M,. According to equation (3) one finds the correlation matrix 
C, for this subset: 

where C is the correlation q x q-matrix for the patterns from the subset L and 0, is 
the q-dimensional zero vector ( q  is the number of pattems in the subset L). It is 
obvious that 

and in turn equation (2) gives 

1 
N J ,  = J +- 5 0 6  

i.e. j =  J ,  again (cf equations (18) and (26)). 
Now turn to the general case (13). Matrix J ,  can be given by equations (2) and 

(3) where {L, 43 is used as an MLISP. Let us also consider, however, the two following 
auxiliary sets: M2 = {M, *) and M ,  = { M ,  +, C), and denote by J2 and J3 the synaptic 
matrices produced by the rule (2) and (3)  for these sets. For set M2 we take the subset 
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{L ,  +) as an MLISP and analogously to equation (26) we have 

i.e. J2 = j  (cf equations (19) and (27)). 
For set M, we can use the subset {L,  +) as an MLISP and therefore we have J, = 52. 

On the other hand, we can take the subset {L ,  <} as an MLISP and in this case we obtain 
.I, = .I,. But the stan$ard PI synaptic matrix is unique and as a result we arrive at the 
chain 5, = J, = J2 = J. Thus for an arbitrary pattern 5 one has .f = J , .  

Now consider the case when all patterns presented to the network are stored by 
means of the sequential rule, i.e. prescription (25) is used. Let us assume that J o = O  
(fabula rosa). Then equation (25) yields for p = 1: 

But the same expression is given by the standard PI rule (2), (3). Taking into account 
the result proved above (coincidence of j and J , ) ,  we conclude by induction that the 
sequential and standard PI learning rules produce the same synaptic matrices. 

4. Conclusions 

Projective properties of the synaptic matrices produced by PI learning rules made it 
possible to construct the sequential learning rule (24). This rule allows a new pattern 
entering the network to be memorized in a simple manner, in addition to the patterns 
previousiy stored. An esseniiai Feature of ihis ruie is that patterns can be correiaied 
(and, in particular, can be linearly dependent), as can occur for patterns arriving from 
the real world. Another attractive property is that the resulting synaptic matrix is the 
same as in other variants of the PI learning rule (see equations (2), (3) or (4)) if ( i)  
prev'ous storing of a set of patterns e', C 2 , .  . . ,c" was performed by rules (2), (3) or 
(4), !f(ii) all patterns presented to the network are memorized by the sequential rule 
I',,. ncnce ,or L,I';SL: cas<* ,'IC awragc capacny an" uas,,,> "L aLLLIacII"II I l a Y c  J'l111G 

values for both standard and sequential PI learning rules. 
Note that, at least, a rough analogy can be made between the sequential rule and 

' on the basis of previous experience ( J )  and, further, only new information (+) is 

. i  
\ 

\ .i ,1c\ r .__. E.. .L-.. -..-- .I__ ..-- ^ ^ ^  ^^_.^ :L.. .__I L^^._^ ̂ P  ~ ..--... :..- L....- 

real biological systems: first an incoming signal (5 )  is perceived and treated 

memorized. 
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